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SUMMARY 

It has been proposed that a single staring infrared focal plane array sensor be used 
to measure the track of a sniper bullet and used to deduce the location of the shooter. This 
involves deducing the three-dimensional track from the two-dimensional information 
provided on the focal plane. This would be impossible in the absence of gravity or other 

forces since an infinite number of straight line, constant velocity three-dimensional 
trajectories correspond to the same two-dimensional track: a slowly moving object at short 
range leaves the same track as a more distant object moving more rapidly in a parallel 
direction. However, in the presence of gravity, the trajectory is curved and this curvature 
can be used, in principle, to distinguish the tracks. The proposed system has been partly 
demonstrated in simulation but no complete error analysis was done. This paper provides 
that error analysis and therefore gives bounds on the sensor performance required to reach 
any specified degree of performance. 

Exact maximum likelihood estimates of the errors are provided for four cases: 

(i) Zero drag crossing shots. A crossing shot is defined as one which passes 
through the sensor field of view perpendicular to the axis of the sensor. This 
is the simplest example to understand and the exact error can be calculated. 

(ii) Zero drag non-crossing shot. The projectile either approaches the sensor or 
recedes from it. A lower bound for the error is given (that is, the true error is 
larger than that calculated) that is expected to be accurate under reasonable 
conditions. 

(iii) Crossing shot with drag. Now a linear drag force is added. The primary effect 
of the drag is to slow the projectile and therefore leave it in the field of view 
longer. Again an accurate lower bound for the error is calculated. 

(iv) Non-crossing shot with drag. In the first three cases, explicit elementary 
functions are calculated for the maximum likelihood estimate of the range error; 
in this most general case, a lower bound of the error is given. 

A sample result is given for the crossing shot with linear drag. The error in down- 
range location, 8y0, for a shot crossing a field of view, ft, is given by: 

(5y0)2 = { 720 (j2 ü05 / [g2R yo (2 tan (Q/2))5] }f 
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where 

a    = single pixel measurement error (radians) 

R    = update rate of the sensor (Hz) 

g = 9.8 m/sec2 

yo = down-range distance 

G0 = average velocity of projectile 

f = 1 + weak function of the drag. 

A similar estimate is derived for other than crossing shots. It is also shown that the other 

trajectory parameters can be estimated extremely accurately so that the error in location 

induced by the other errors may be neglected. For the most favorable condition, a shot 

crossing the entire field of view, a sensor with the following nominal characteristics: 

a    = 0.5 milliradians 

ß =60 degrees 
R =400 Hz 
yo = 250 meters 

u0 = 600 meters/sec 

one has 5yo = ± 27 meters with proportionally larger or smaller errors with different 

choices of parameters. If, in addition, the muzzle flash is unobserved, there may be an 

error in extrapolating the track origin back to a presumed location. Even a 0.1 second 

uncertainty in the time of the shot gives a 100 meter error corresponding to an error box of 
50 x 100 meters. 

The error depends on the -5/2 power of the time in the field of view. For example, 

if the trajectory is only observable over 30 degrees rather than 60, the error increases to 

±150 meters. In urban or other cluttered environments the field of view may be sharply 

restricted. If the observable portion of the trajectory is restricted to 60 meters with an 

average velocity of 600 meters/sec, the range error at a range of 100 meters is ± 220 meters 

and increases quadratically with range. 

The range error estimate given is a lower bound to the error since a variety of 

perturbations were neglected that, in principle, increase the error. These include atmos- 

pheric perturbations, tumbling of the bullet, bullet lift and crosswind sensitivity. Nor are 

any detailed infrared sensor considerations other than resolution included. 
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I.   INTRODUCTION 

Knowledge of the location of a sniper, even incomplete knowledge, may be 
militarily useful in a variety of scenarios of concern to the Department of Defense in both 

combat operations and operations other than war. There are a number of complex issues to 

be sorted out which depend upon terrain, rules of engagement, and tolerance for collateral 

damage before any particular implementation of sniper location and sniper neutralization 
technology can be reasonably fielded. We acknowledge these issues and their importance. 
However, resolution of these global issues depends in part on an accurate assessment of 
the technical capabilities of the particular implementations. In this paper, we present a 
calculation of the uncertainty in determining the three-dimensional location of a sniper, 
constructed from a two-dimensional track of the bullet. 

Specifically, it has been proposed that a staring infrared focal plane array sensor be 
used to measure the track of a sniper bullet and used to deduce the location of the shooter. 
This involves deducing the three-dimensional track from the two-dimensional information 
provided on the focal plane. This would be impossible in the absence of gravity or other 
forces since an infinite number of straight line, constant velocity three-dimensional 
trajectories correspond to the same two-dimensional track: a slowly moving object at short 
range leaves the same track as a more distant object moving more rapidly in a parallel 
direction. However, in the presence of gravity, the trajectory is curved and this curvature 
can be used, in principle, to distinguish the tracks. 

There have been simulation results that indicate that a relatively simple infrared 
sensor might be able to perform this task. In particular a staring focal plane array sensor of 
512 x 512 pixels covering a field of view of 60 degrees (approximately 1 radian) with a 

readout rate of 400 Hz has been proposed as sufficient for the task. The pixel size of this 
sensor would be 2 milliradians (mr) which is relatively coarse. However, it is also 
suggested that the blurred and streaked image of the projectile could be analyzed to provide 
subpixel accuracy in the centroid location of the object. Although a detailed analysis has 
not been presented, a figure of "1/4 pixel" or 0.5 milliradians has been put forward as an 
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estimate of the single pixel measurement accuracy.1 Note that this is not the overall track 

accuracy, which is improved as the number of data points measured increases, but is the 

individual measurement error. If the single pixel measurement error is 1/2 pixel or 

1 milliradian, the range errors will double. 

In order to provide a basic understanding of the error mechanisms for this problem, 
a maximum likelihood estimate is made for four cases of increasing complexity: 

(i) Zero drag crossing shots. A crossing shot is defined as one which passes 
through the sensor field of view perpendicular to the axis of the sensor field of 
view. This is the simplest example to understand and the exact error can be 
calculated. 

(ii) Zero drag non-crossing shot. The projectile either approaches the sensor or 
recedes from it. A lower bound for the error is given (that is, the true error is 
larger than that calculated) that is expected to be accurate under reasonable 
conditions. 

(iii) Crossing shot with drag. Now a linear drag force is added. The primary 
effect of the drag is to slow the projectile and therefore leave it in the field of 
view longer. Again a lower bound for the error is calculated. 

(iv) Non-crossing shot with drag. In the first three cases, explicit elementary 
functions are calculated for the maximum likelihood estimate of the range error; 
in this most general case, an exact solution for a lower bound of the error is 
given in terms of a quadrature. 

It will be assumed for convenience that the focal plane array is aligned perfectly 
with the local direction of gravity. It will be generally assumed that the trajectory is nearly 
horizontal so that the horizontal (azimuthal) component of the velocity is much greater than 
the vertical (elevation) component. This is consistent with the imagined scenario of a 
sniper; even if located in a building 20 meters above ground level, firing at a range of 
400 meters gives a ratio of vertical to horizontal components of 1/20. 

Zero drag is considered in Section n. This case defines all of the basic ideas and is 
easy to follow. The simplest case is the crossing shot which is parallel to the plane of the 

sensor. In this case, the azimuthal and elevation degrees of freedom decouple. Only the 
elevation degrees of freedom are relevant to the determination of the range to the target. 
Maximum likelihood, in this case, is equivalent to a least squares approach. Section IIB 

l In the absence of a complete sensor design, the single pixel measurement accuracy and sample rate will 
be taken as quoted; the results can easily be scaled to different values. Appendix B gives a brief 
discussion of sensor issues. 
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describes the estimate of the range error in this case. The maximum likelihood estimate of 
the error is considerably larger than a naive estimate of the error due to the strong 
correlation of two of the parameters to be estimated: the gravitation drop and the vertical 

component of the velocity. The basic idea is that it is hard to separate the small vertical 

displacement on the focal plane due to gravity from the displacement due to a slightly 
depressed trajectory. Section IIC gives the errors for the remaining trajectory parameters 

and shows them to be small. Section IID generalizes the previous results to the non- 
crossing case. The error is reduced for approaching shots and increased for receding shots; 
this can be understood as a magnification or demagnification effect. In the most extreme 

limit of an approaching shot that passes very near the sensor, the range error is reduced to 
about 30 percent of the crossing shot case. 

In Section III, the effects of drag are introduced. A linear drag model is used for 
mathematical convenience and because it is an excellent representation of the forces on the 
projectile in the relevant domain. Within this model, the primary effect of the drag is to 
slow down the projectile, therefore increasing the amount of time it stays within the field of 
view of the sensor, which in turn has two consequences: (1) greater statistical accuracy 
from the larger number of data points; (2) a longer time for gravity to act on the projectile. 
In general, the drag coefficient must be estimated from the data; this couples the horizontal 
and vertical track parameters. However, for nearly horizontal trajectories, it can be shown 
(Section m-B) that the horizontal data provides a sufficiently accurate estimate of the drag 
force that errors in the drag coefficient are not the limiting error mechanism. The maximum 
likelihood estimate of the range can again be made using only the vertical measurements, 
assuming that drag force is known exactly. In Section m-C, a similar result to the no-drag 

case is obtained for the crossing shot with the average velocity in the field of view replacing 
the initial (and essentially) constant velocity in the no-drag case. Section III-D combines 
the drag model with the approaching shot. 

This paper will focus on the estimate of the three-dimensional track parameters from 
the two-dimensional sensor data. This attempts to provide a location in three-dimensional 
space of the first point of the measured track. This is not the only source of error in 
locating the shooter if the initial portion of the track (including the muzzle flash) is not part 
of the measured track. If the flash is not observed, there is a further error in extrapolating 
the track backwards by an unknown time. This extrapolation error may be large and is 
proportional to the product of the time between the flash and the first observation At and the 
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muzzle velocity, uo, which is itself uncertain.2 In some scenarios, this is the dominant 

error in the problem and may be more important operationally than the statistical error 

discussed in the following sections; note that a 0.1 second error in the time may correspond 

to as much as a 100 meter error in the location. For crossing shots the extrapolation error 

is orthogonal to the range estimate. In an urban environment and a crossing shot, the range 

from the sensor is important in determining from which street a shot is fired; the 

extrapolation error indicates how far down that street the shooter is. It may be sufficient to 

identify the street. On the other hand, for a shot directed toward the sensor the ranging 

error and the extrapolation error are in the same direction and the error in identifying the 

street is larger. 

2    The muzzle velocity varies with the type of weapon and ammunition over a broad range. The velocity 
is estimated in the course of the overall estimation but is subject to the same uncertainties as the range. 
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II.   ZERO DRAG 

A.  ZERO DRAG MOTION 

The position of a projectile influenced only by gravity is given in Cartesian 

coordinates by: 

xi=xo + uxoti (II-la) 

yi=y0 + Uyoti (II-lb) 

2i = zo+u,oti-|ti2 , ai-ic) 

where the axes are chosen so that the y direction is the direction perpendicular to the 
sensor. The N values of the time coordinate, ti, are evenly spaced from 0 to t, where ti = 0 
and tN = t, the total time in the field of view of the sensor. The measured pixel coordinates 
are given by the ratio of these quantities: 

Xi = Xolu^+Tixi 

Yo + Uyo^ 

1     2 zo + uzoti--gti 
Zi= 2 + Tlz.    f (jj.2^ 

YO + UyO^ 

where Tjxi and Tjzi are the errors in the pixel measurements. Assuming that the errors are 
independent and normally distributed,3 with ox and oz the standard deviations, the 

estimation of the unknown parameters may be performed by maximum likelihood or 
equivalently, least squares. The total square error around the assumed track is 

1    2 
E=S[Zi-

0 2Sl
]2/2G2+[X._Xol^otL]2/2g2 

i=i,N yo+uyoti yo+uyoti 

Some care must be taken with this assumption. Appendix B shows that for a severely undersampled 
sensor for which a single point error of 0.3 is appropriate, the errors are not independent and the full 
value of N does not apply. 
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Note that if ox = az, then the error is isotropic and independent of the coordinate system.4 

B. RANGE ERROR FOR CROSSING SHOTS 

The maximum-likelihood estimate couples all the unknown parameters xo, yo, zrj 

and UxO, Uyo, and uzn, giving a 6-parameter nonlinear estimation. Note that only the 

presence of the gravitational term permits a solution since otherwise the problem is 

homogeneous in the positions and velocities and no unique solution can be found. Thus, it 

is the size of the gravitational term and its separability from the other terms, in particular, 

the z-component of the velocity, that sets the scale of the error. 

Although it is possible to address the full non-linear estimation problem directly, it 

is more illuminating to consider the special case of the crossing shot with Uyo = 0. In this 

case, the remaining 5-parameter estimation problem in x' = xo/yo, z' = zo/yo, vxo = uxfVyo 

VzO = Uzo/yo and g' = g/2yo is linear. Moreover, the azimuthal variables x' and vxo are 

decoupled from the elevation variables z', VzO and g', separating the 5-parameter estimate 

problem into a 2-parameter estimate for the azimuthal variables and a 3-parameter estimate 

for the elevation variables. All of the absolute range information is in the variable g' since 

the other four parameters are homogeneous in range, representing angular positions on the 

focal plane or angular velocities. 

The problem is simplified by the fact that the time coordinates are uniformly spaced. 

For a high speed sensor (sampling rate, R = 100 Hz or greater), the sums of various 

powers of ti can be represented by integrals. 

< tim > = 1/N X tim = tm/(m+l)   . (n-5) 

The values of the parameters to be estimatedfor the 3-parameter elevation variables are 

determined by solving the linear equations given by the first derivatives of the error. 

0 = -N(< Zi > - z' - vx0 <Ti > + g'< T2 >)/ o2 (II-6a) 

0 = -N(<a,iZi>-z,<Ti>-vxo<T12> + g'<TiT2>)/o2 (H-6b) 

0 = N(<T2Zi>-z,<T2>-vxo<TiT2> + g,<T22>)/o2  ,      (II-6c) 

It is not assumed in this paper that the error is the same in the vertical and horizontal directions. In 
fact, since for a nearly horizontal shot moving at 1 radian/sec or more over the focal plane (thereby 
staying in the same vertical row of pixels between samples but being smeared over 2 or more pixel 
subtenses horizontally), it is unlikely that they are the same. Only the value of the vertical error is 
of importance in this paper as long as the error in the horizontal estimate is on the order of 
1-2 milliradians or less. 
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where, for notational convenience, c has been written for cz, the single pixel measurement 

error in the vertical direction. For future use, the notation, Ti = t and T2 = t2 is introduced. 

Of more interest is the matrix of second derivatives that determines the error. 

(H-7a) 

1 <Ti> -<T2> 

M = N/o2 <Ti> <Ti2> -<TiT2> 

-<T2> -<TiT2> <T2
2> 

or numerically: 

1 t/2 -t2/3 

M = N/a2 
Ml t2/3 -t3/4 

-t2/3 -t3/4 t*/5 

(n-7b) 

Since the estimation problem is linear, the covariance matrix is independent of the 
values of the parameters to be estimated. Note that the second and third lines of the matrix 
are nearly proportional, indicating that the estimates for the z-velocity and the gravitational 
term are highly correlated; this correlation is important for computing the total variance in 
the estimate of g', (5g')2. 

The total variance of the estimates of the parameters is given by the diagonal 
elements of the inverse of the covariance matrix. The variance in the vital estimate of g1 is 

01-8) (^f = 
Nc^(l-p2) 

where 

or numerically: 

GI
2
=<TI

2
>-<TI>

2 

a2
2=<T22>-<T2>2 

p2 = [< Ti T2> - < Ti > <T2>]2/ ai2 a22 

Oi2=(l/12)t2 

o22= (4/45)14 

p2= 15/16   , 

0I-9a) 

(II-9b) 

(II-9c) 

(Il-lOa) 

(II-10b) 

(II-10c) 
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giving finally for the variance in the estimate of g': 

(5g')2 = 180 a 2/ (N t4)   . (IM1) 

The form of this equation is as expected from general considerations and dimen- 

sional analysis, but the numerical factor of 180 is larger than might be intuitively expected, 

corresponding to the strong correlation5 between the gravitational and the z-component of 

the velocity terms. 

The variance in g' can be translated into the variance in the estimate in the range, y0: 

(8yo)2=180c2y04/(N(g/2)2t4)   . (H-12) 

One way of understanding this error is to consider the fractional error, written in 

terms of the angular change induced by the gravitational drop 56 = gt /2yo: 

(8yo/yo)2=18Oo2/(N802)  . (IM3) 

Since for a 400 Hz sensor, the value of N is on the order of 400 or less, a small fractional 

error in range will in general require that the single pixel measurement error, o, must be 

much less than the gravitational drop, 80, to get an accurate range estimate. For example, 

for N = 400, a 10-meter accuracy at 1 km would require a ~ 50 / 70. For a 1 second flight 

at 1 km, 80 = 5 milliradian, requiring a single pixel accuracy of less than 0.07 milliradian. 

Returning to Eq. (11-12), it can be written as 

(5yo)2 = 180G2yo4/(R(g/2)2t5)   , (11-14) 

where R is the sample rate. The total time for a projectile that crosses the entire field of 

view is related to the range yo and field of view Q, of the sensor. 

yo2tan(Q/2) = uxot~uot  , (H-15) 

where uo is the projectile velocity in meters/sec. Therefore 

(5y0)2 = 720 c2uo5 / [g2 R y0 (2 tan (Q/2))5]   . (IM6) 

It might be naively assumed that the confusion between the z-component of the velocity and the drop 
induced by gravity can be transformed away by choosing a coordinate system aligned along the 
projectile's initial velocity. In this case the gravity terms appear isolated as the only forces transverse 
to the direction of motion. If one could do this, the factor of 180 would be reduced by a factor of 16, 
improving the range estimates by a factor of 4 (if the origin of the track is likewise transformed away, 
the total reduction in the variance is from 180 to 5). This, however, is an illusion. Although one may 
imagine transforming to such a coordinate frame, in fact one has to estimate the parameters of that 
transformation since the depression angle of the gun is unknown. This estimate is mathematically 
identical to the estimation procedure used here and gives rise to the same correlated errors. 
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The range variance is inversely proportional to the range and proportional to the fifth power 
of the projectile velocity. For shots which originate within the field of view, the time is 
reduced and the error increases rapidly. For example if the trajectory occupies only 1/2 of 

the field of view, the variance increases by a factor of 25 = 32. In many environments (for 
example, urban warfare) a reduction in the field of view many be expected. 

Using the assumed sensor parameters 

a = 0.5 milliradians 

Q = 60 degrees 

R = 400 Hz 

(II-17a) 

(II-17b) 

(II-17c) 

one has 

8yo=±48m[(60/cö)5uo5/yo]1/2  , (11-18) 

where co is the amount of the trajectory that is visible in degrees (co < 60), urj is measured in 

km/sec, and yo in km. (For convenience, the values of urj and yo are given in meters in the 
tables that follow.) The error is large for high velocity projectiles with uo of order 
1 km/sec. Of course, the numerical value of the coefficient depends on the sensor 
parameters chosen. Table II-1 gives the range error for a number of parameter choices 
(Appendix A gives the muzzle velocity of a number of rifles; they range from 700 to over 
1,000 meters/sec). For low velocity bullets the range errors are reduced but are still 
significant especially if only 30 degrees of the field of view is available. 

Table 11-1.   Range Errors for Different Parameters 

Projectile velocity (m/sec) and 
range (m) 

60 degree 
available 

30 degree 
available 

uo = 600     yo = 250 8yo-±27m 8yo«±150m 

uo=600     yo = 1,000 5yo>=± 13.5 m 8yo = ± 75 m 

uo = 800     yo = 250 8yo=±55m 8yo«±310m 

uo = 800     yo = 1,000 5yo=± 27.5m 8y0=±155m 

uo = 1,000 yo = 250 5yo = ±96m 8yo = ± 540 m 

uo= 1,000 yo= 1,000 8yo=±48m 8yo ~ ± 270 m 
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C.  ESTIMATES OF THE OTHER TRAJECTORY PARAMETERS 

The same maximum likelihood estimates used for the range error provide estimates 

for the other trajectory parameters. This section summarizes those results and shows that 
the projective track parameters are estimated to acceptable accuracies under almost all 

conditions. 

The error in the vertical angular velocity, 8vz is 

*z ,*   x2    192r2 

j -s—Y-     or     (8vzr =  
Naf(l-p2) Nt 

(Sv*>2 = xT U     2,      or     (ovz)
2=^^   . (IM9a) 

The large numerical factor is again a consequence of the large correlation between 
this parameter and the gravitational term. For a crossing shot covering the entire field of 
view, vxt = 2 tan (ft/2), so this can be rewritten as: 

v2       N(2tan(Q/2))2 

Since it may be assumed that N > 35, the error in the depression angle of the track is 

^-<2GZ=1(T
3
   . (II-19c) 

Even with a path length of 1 km, this 1 milliradian error in the depression angle of the 
trajectory is equivalent to an error of less than 1 meter. 

The error in the initial elevation coordinate 8z' is 

^a^ji^T^-^T^]     or 2 = 9a? 
Nafafa-p2) N 

If it is assumed that N > 35, the error in the initial elevation of the track is 

8z' < Cz/2 « 0.25 lO-3   . (II-20b) 

For a path length of 1 km, this 1/4 milliradian error is equivalent to an error of less than 
0.25 meter. 

For the azimuthal coordinates, the results are of a similar form with smaller 
numerical coefficients (since only two parameters are estimated). 

<SVl)2=^   OT    (8v*)2=i5F ' (n"21a) 
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For a crossing shot crossing the entire field of view, vxt = 2 tan (Q/2): 

&£ !2^—r . (D-2ib) 
v2       N(2tan(Q/2))2 

Again assuming that N £ 35, the relative error in the azimuthal velocity of the track is 

^<^- = 0.25HT3   . (11-22) 
vx      2 

The azimuthal velocity is on the order of 1 radian/sec; therefore, the error is less than 
0.25 mr/sec. 

(^')2 = CT\1T21>      <*     (8x')2=%   . (II-23a) 

The error in the initial azimuthal coordinate 8x' is 

'*<T2> /s.x2    4a2 

■—7f—     or     (8x' r = — 
Na2 N 

If it is assumed that N > 35, the error in the initial elevation of the track is 

8x' <cx/3 = 0.17 10-3   . (II-23b) 

For ranges of the order of 1 km, this gives an error of less than 1/6 meter. 

Thus, for shots covering the entire field of field, the errors in the projective 
coordinates of the track origin and the trajectory angles are known to 1 part in 1,000 or 
better. For trajectories that occupy only a fraction of the field of view, the errors increase 
but are still likely to be acceptably small. The error in range is larger in distance units since 
the physical scale of the drop due to gravity is so small, compared either to the entire field 
of view or to the single pixel measurement error. 

D.  NON-CROSSING  SHOTS 

1.   Estimate of the Closing Velocity 

The high quality of the estimates for the projective track parameters allows a simple 
extension to the non-crossing case. In general, one would have to solve the coupled 
azimuthal and elevation equations (a 6 x 6) problem, but as will be shown in this section, 

the azimuthal equations alone give a sufficiently precise estimate of the projective velocity 
in the y-direction (toward or away from the sensor), Vyo = u yo/yo- Then, the error in the 
elevation equations can be analyzed assuming that the value of Vyo is exactly known. The 
true error will be somewhat larger than this but not significantly so. 
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One could solve the azimuthal estimation problem exactly; however, since only the 
precision of the estimate is in question, a simpler perturbational approach suffices. Begin 

with the azimuthal pixel value equation from (II-2a) above. 

x     *o + u»oti+ ai.24a) 

yO + UyO1* 

Using the protective coordinates, this may be expanded in a power series if vy t is small (a 

close to crossing shot): 

Xi =f±^ + Tlxi = x,-Kvx-xWy)ti-vyvxt
2 + 0(v2t2) + rixi   .     ai-24b) 

1 + Vytj 

This is formally identical to the 3-parameter estimation problem for the elevation variable in 

the crossing-shot case with relabeled coefficients. Therefore, one has immediately that: 

^ = 180c2 

No^l-p2)      Nt 

For a crossing shot covering the entire field of view, vxt = 2 tan (Q/2), so using the fact 

that vx is well estimated, this can be rewritten as 

(8vv)
2 180a2 

<5v*V  =^277—27 = ^T   • (II-24c) 

v2        N[2tan(Q/2)]4 (II-24d) 

For N > 35, this gives an error in the bearing of the trajectory 5vy/vx of: 

5vy/vx < 1.7 a « 10-3  . (II-24e) 

Even if the field of view is reduced to 30 degrees, the error only increases to 4 10-3. Thus, 
the protective y-coordinate of the velocity can be assumed to be well known. Although this 
estimate was formed perturbatively, it is clear that the error in the projective y velocity will 
remain small in most scenarios. It will therefore be assumed to be known for the purpose 
of analyzing the elevation error. 

2 .   Estimates of Range 

Examining the error and assuming vy is a known quantity, one sees that the 
estimation problem is still linear, but the averages are now weighted with the factor of 
1/(1+vy t)2. Define the average of any function of time, <h(t)>, by 

l + vvt l      dt 
<h(t)>=_^J__^h(t) , <n.25a) 
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then the range error is given by 
.4 _2 

0    ,    (l + vvt)cn „    ,        (l + vvt)yoa^ 
(5g1)2 =      o y    o      or  (5y0)

2=— y
0  1 °   z ,     ,      (n-25b) 

Na^(l-p2) N(g/2)2a^(l-p2) 

where the standard deviations and correlation coefficients are computed using the average 
of Eq. (II-25a). The averages of the various powers of t are given by: 

< t >=< Tj >= t [1 - ^(z - ln(l + z))] (H-26a) 
z 

< t2 >=< T2 >=< T2 >= t2 [1 - 2^(-z + ^- + ln(l + z))] (II-26b) 
z 2 

< t3 >=< T^ >= t3 [l-3^£(z-^— ln(l + z))] ai-26c) 
z 2 

1  . 2        3        4 
<t4>=<Tl>=t4[l-4-^-(-z +—- — + — + ln(l + z))]   , ai-26d) 

z 2      3      4 

where z = vyt. The final result can be written as: 

/tJv2    180(l + vvt)CT2 p    ,    y4l80(l + vvt)a
2 

(5^       ^-^h(V) OT &o)2=f     (g/2)2N     h(V)   . A1'27) 

where h(z) is a rational combination of the functions given in Eq. (n-26a)-(II-26d). 

There are three points to mention in regards to Eq. (11-27). First, the ratio yo/t in 
the equation is no longer a constant even for a full field of view trajectory. In fact, for a 
60-degree field-of-view sensor, the time in the field of view is always reduced for an 
approaching shot (and increased for a receding shot) compared to the crossing shot at the 
same velocity and initial range, yo- The geometry of the shot determines the time in the 
field of view, and this is the most important variable in Eq. (11-27). 

Second, the factor 1 + vyt = ye/yo is the ratio of the y-coordinate when the projectile 
leaves the field of view, ye, and its initial coordinate. For approaching shots, this factor is 
less than one and reduces the variance. This is easily understood since as the object 
approaches the focal plane, the angular displacements are magnified. This is the second 
most important factor since for approaching shots, it can reduce the variance substantially.6 

6 Note, however, that in the limit of vyt = - 1, for which this factor equals zero, the approximation that 
the value of vy is precisely known breaks down and the variance given in Eq. (11-27) is only a lower 
bound to the true variance. A separate calculation may be performed for that limit but the error given 
here remains a rigorous lower bound. 
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Thüd, the detailed behavior of the moment functions in Eq. (11-26). The function 
h(z) used in Eq. (11-27) is plotted in Fig. II- la. It is remarkablely constant for z > - 0.5. 

For small z (= vyt), it can be written as: 

h(z) = l + 13z2/105  . (11-28) 

The value of h(z) and the quadratic approximation are shown in Fig. 1Mb. As z => - 1 
(for which the bullet trajectory nearly intercepts the sensor), h(z) increases rapidly 

proportional to l/(l+z); the product (l+z)h(z) has a limiting value of 1/15. 

The reduced value of the error for direct shots (z => - 1) must be taken with a 

grain of salt since the extrapolation error for such shots (for which the initial flash may be 

unobserved) is in the same direction and is certainly larger. Thus, there is a possible 

additional error of up to 100 meters to be added to the direct shots. If one wanted to 

combine the extrapolation error with the range error one might write 

,    vn 180(1+ vvt)aj „   ,     - 
(5yo)     ^~~U2fN     h(Vyt) + ( ' ai"29) 

where ß is the angle between the trajectory and the x-axis (ß = 0 for crossing shots). For 
direct shots, TC/2 > ß > (TC - Q)/2 (90 > ß > 60 degrees for the notional sensor) and the 

extrapolation error will dominate. Of course, if the complete trajectory is visible, then the 
extrapolation error is relatively small, being determined only by the sample rate. 

10 

R 

A I 

n, I v. 
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-0.5 0 
z 

0.5 

Figure 11-1 a.   Correction Function h(z), z = vyt 
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Figure 11-1 b.   Correction Function h(z) and Quadratic Approximation 

The numerical factor 180 (l+z)h(z) is shown in Fig. II-2a. It decreases nearly 
linearly with a final value of 12 at z = - 1 (but with a logarithmically singular derivative: at 
z = - 0.99 the value is greater than 16). This provides a correction factor to the range error 
estimates given by the square root of (l+z)h(z) as shown in Fig. II-2b. For the extreme 
shots the factor is about 0.4 for z = - 0.9 and has a limiting value of 0.26 at z = - 1. 

400r 

Figure ll-2a.   Numerical Factor in Range Variance as a function of z = vyt 
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Figure ll-2b.   Range Error Correction Factor as a function of z: vyt 

The precise value of the range error depends on the geometry of the shot. Consider 
the paths shown in Fig. II-3 for the 60-degree sensor. For a shooter located at points A 

and B, the crossing shot is indicated by "ai" and "bi", respectively. These crossing shots 
have the values given for various ranges and initial velocities in Table II-1. For the shots 
with an angle of 30 degrees inward (denoted "da" and "b2" in Fig. II-3), the values of 
ye/yo are 1/2 and 3/4, respectively, and the error variance is proportionally reduced. 
However, the length of these paths is smaller than the ai and bi paths by a factor of V3/2, 
increasing the variance by a factor of (V3/2)5 = 2.1. The correction factors are therefore 

approximately 1.05 and 1.25 when applied to the corresponding columns in Table II-1. 
For the shots directed at the sensor from position A (denoted "a3"), the range reduction is a 
factor of 0.26 for a direct hit (somewhat larger for near misses). For a shot originating at 
any other position, the variance is increased by the 5/2 power of the ratio of time of flight. 
For example, for position B ("b3"), the time in the field of view is reduced by a factor of 
V3/2 and the variance is increased by a factor of 2.1. The overall correction factor is 0.37. 
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Sensor 

Figure 11-3.   Geometry of a Slant Shot 

Table II-2 gives the correction factor to be applied to Table II-1 (using the second 
and third columns for the crossing and mid shots originating at A and B, respectively, and 
an example out of that table for each of these cases). For the direct shots, the correction 
factor is applied to the corresponding al case. Note that these errors do not include the 
extrapolation error which may dominate in the direct shot cases. 

Table 11-2.   Geometric Corrections 

Shot Geometry Table 11-1 Correction uo = 600 m/sec, yo = 250 m 

Crossing Shot-Full FOV: a-\ 1 8yo = ±27m 

Crossing Shot-1/2 FOV: bi 1 5yo = ±150m 

Mid Shot-Full FOV: a2 1.05 8yo = ± 28 m 

Mid Shot-1/2 FOV:b2 1.25 8yo=±188m 

Direct Shot: a3 0.26 8yo=±7m 

Direct Shot: D3 0.37 8yo=±10m 
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III.   INFLUENCE OF DRAG 

A.  LINEAR DRAG MODEL 

A linear drag model is adopted. This is, in fact, a good approximation to the total 
force on the bullet in the supersonic regime (Mach number between 1.25 and 3, see 
Appendix A; the value of the drag force coefficent a for an M-16 rifle with standard 

ammunition was measured in one experiment to be approximately 0.56) and is mathe- 

matically simple. The further advantage of a linear model is that the vector components of 
the velocity are independent of one another. Writing the drag force as 

F = -au   , (HI-1) 

the motion of the projectile is given by: 

xi = xo + UxoTi (m-2a) 

yii = yo + uyoTi (m-2b) 

Zi = zo + UzoTi-gT2/2   , (HI-2c) 

where Ti, T2, etc., are given by the truncated exponential functions 

Ti = (l-e-«t)/a (Hl-3a) 

T2 = 2!(e-a t- 1+ at)/ a2 (HI-3b) 

T3 = 3!(1 - at + (at) 2/2! - e~a *)/ a*, etc. (HI-3c) 

The estimation problem now includes the value of the viscous drag coefficient a. 
The azimuthal and elevation degrees of freedom are coupled together by the a estimate 

even for the crossing shot. However, for nearly horizontal shots, it is clear that it 
is primarily the horizontal motion that permits the drag coefficient to be estimated. 
Section ni-B shows that the drag coefficient can be adequately estimated from the 
horizontal motion alone and can be assumed to be known for the vertical coordinates. 
Section III-C applies the resulting drag model to the crossing-shot case. Finally, 
Section ni-D combines the drag effects with the non-crossing shot geometry. 
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B.  ESTIMATE OF THE DRAG COEFFICIENT 

It can be shown that the horizontal motion gives a very accurate estimate of a. To 

see this most simply, consider the pixel motion, expanded for small values of the time t: 

Xi ~ x' + vx0 tj - vx0 a t i2 /2 (m-4a) 

Zi~z' + vzoti-vzoatj2/2  . (HI-4b) 

The expression for the horizontal motion (ffl-4a) is formally just like the zero drag vertical 

estimation problem or the y-velocity estimation of the previous section. Thus, one has 
immediately: 

(ovx0a)2=180a2/(Nt4)  . (HI-5) 

For a field of view of approximately one radian, the angular velocity is v xo ~ 1/t, so that 

(8oc)2«180a2/(Nt2)  . (HI-6) 

Thus, for transit times of the order of 1 sec, N ~ 400 and 8 <x ~ o = 0.25 10-3; since the 
value of a is 0(1), this is better than 1 part in 4,000. 

This error is insufficient to induce a significant error in the estimation of range. If 
there is an error in a, then again using a perturbational approach to estimate effects, the 

error in g' is roughly 

8g' = -vz0oa   . (HI-7) 

The total error includes the statistical error calculated as in the previous section and the error 
of Eq. (ni-7); treating these as statistically independent, 

(8 g')2 = [1 + (vzo / vx0)2]180 a2/ (N t4)  . (ffl-8) 

For nearly horizontal shots, the contribution of the drag error is clearly negligible. 
Therefore it is sufficient to assume that the viscous drag coefficient is known. This has the 
advantage of reducing the problem to a three parameter linear estimate for the crossing shot 
and gives an accurate lower bound to the range error. 

C.  EFFECT OF DRAG ON THE ESTIMATE 

Assuming that the drag coefficient is exactly known, the solution is immediate. The 
formal solution of the estimation is identical to the zero-drag case 

(8g')2 = o2/[N(a22(l-p2))]   . (m-9) 
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Calculating the statistical averages needed: 

<Ti> = T2/2t 

<T2> = T3/3t 

<TiT2> = T22/4t 

<T12> = [T2-Ti2]/2at 

<T22> = [2tT3/3-T22/2-T4/6]/at  . 

Using these expression to define the values of p and 02, one obtains 

(8g')2 = [180a2/Rt5]f(at)  , 

(HI-10a) 

(m-10b) 

(HI-10c) 

(ffl-lOd) 

(m-10e) 

(m-ii) 

where f(at) is a rational function of the expressions in Eqs. (Ill-lOa)-(III-lOe) For small 
value of at: 

f(at) = 1 + (at)2/42  . 

Figure III-l shows that this form is a good approximation for at < 5. 

1.6; 

1.5 

1 4 ..-. 

— 1.3 

1.2- 

(HI-12) 

1.1- 

Figure III-l.   "f" Drag Factor as a Function of q B at 

The effect of the drag on the form of the variance is therefore almost negligible. 
The primary effect is the slowing down of the velocity and the concomitant increase in the 
time spent in the field of view. The average velocity, iro, is given by: 
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\X0(at) = \iQa-c~<xt)/at  . (m-13) 

The final result for the variance in the estimate of range is therefore: 

(5yo)2 = {720 G2 ü0 5 / [g2R yo (2 tan (Q/2))5] }f(cct)  . (ffl-14) 

The results given in Table II-1 can be used without change (neglecting the f() 

correction) if the velocities are interpreted as the average velocity over the field of view. 

For any particular trajectory, the time of transit and expected value of the drag coefficient 
should be used to provide an estimate of the average velocity. It is expected that at will be 

of order 1, probably less than 0.5 for shorter ranges. 

For at = 1, the average velocity is 63 percent of the initial velocity (the final 

velocity is 37 percent of the initial velocity). For a high velocity bullet (initial velocity 
1,000 m/sec) the average is reduced to approximately 600 meters/sec; for a low velocity 
(initial velocity 700 m/sec), it is reduced to approximately 440 m/sec. 

For at = 0.5, the average velocity is 79 percent of the initial velocity (the final 

velocity is 60 percent of the initial velocity). For a high velocity bullet (initial velocity 
1,000 m/sec), the average is reduced to 790 meters/sec; for a low velocity (initial velocity 

700 m/sec), it is reduced to approximately 555 m/sec.7 

For the M-16 case described in Appendix A, a = 0.56, so at is approximately 0.44 

after 500 meters of flight. The average velocity over the first 500 meters for the M-16 case 
is 650 meters/sec. 

D.  COMBINING DRAG WITH SLANT SHOTS 

With the machinery in place for non-crossing shots with no drag and crossing shots 

with drag it is straightforward to write down the general result. It will be assumed that the 

projective y-velocity and drag coefficient are estimated from the horizontal motion as 

above. The errors in the y-velocity and drag coefficient will be larger than in the two 
previously discussed limiting cases, but a preliminary analysis indicates that the increase in 
error is not large; one is simply increasing the number of parameters to be estimated from 

Note that if the velocity of the bullet approaches Mach 1, the linear drag model and indeed any simple 
drag model will become inappropriate (near Mach 1, the effects of drag on the bullet are likely to be 
difficult to model). Estimates of a are in the vicinity of 125 (see Appendix A) for typical projectiles. 
At 250 meter range and for the full field of view crossing shot geometry, a 700 m/sec projectile will 
transit in approximately 0.3 seconds, so that at - 0.45. In this case, the final velocity will be 
420 m/sec, which is still in the linear regime. 
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the horizontal motion. However, assuming that these quantities are known does ignore 
some of the error sources in the full problem. Therefore, the estimates of the error given 

below are a lower bound to the range estimates, but it is one we believe is reasonably 
accurate except for direct or near direct shots for which the horizontal motion is reduced. 

Averages are defined by 

r   dtF(t)        r    dtF(t) 
Id + VyTj)2     Id + VyT!)2 

<F(t)>=-Q ^-=°        */       , (m-15a) 
llwll 

where the normalizing weight llwll is 

r      dt vv Ti ot/vv 
J 2=——[- hr + L[ln(l + vyT1) + at]]   . (m-15b) 
ia + VyTO2    vy+a 1 + VyTj    Vy + a y l 
o 

The error in range is given by 

tyo<*z (Syo) = „  ;"2
Z2^  -2. (ni-i6a) N llwll (g/2ra|(l-pz) 

A Jl 
(8y0) =       ? A P(«t,vvt)   , 

N llwll (g/2)2t4 y (HI-16b) 

where the averages, standard deviations and correlation parameters are calculated with the 
average defined as in Eq. (111-15); note that llwll is proportional to t for t small. The 
function p(at,vyt) in Eq. (HI-16b) is a rational function of the various moments computed 
with the weight factor. This form reduces to the previous results in each special case; for 

zero drag p(0,vyt) = h(vyt) and for crossing shots p(at, 0) = f(at). The integrals now 
required to evaluate p(at,vyt) cannot be evaluated in terms of a finite number of elementary 
functions, but special cases can be evaluated by expanding the integrals. 

For small values of time (meaning at and/or vyt are small), the weight factor t / llwll 
may be written as 

t ocvv   0 _ = (1 + VyTl)(1 + _^2 — = (l + vyT1)(l + —^T2)   . (m-17a) 

The second factor could use either t or Ti interchangeably; the first factor is just the value 

of ye/yo in the presence of drag. The statistical factors again only weakly depend on the 
parameters, 
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p(at,vyt) = (l + ^(vyt)
2+^-) + 0(t3)   , (m-17b) 

so that the error can be written as 

(5yo)2 = y,i8^_1+il   )2+(aoi+^v!) 
y0N(g/2)2t4       105   y 42 6 

The correction terms in the last factor are all small for vyt > - 0.5. Therefore in this region, 
the results of the previous sections can be applied using the average velocity. Thus, the 
correction factors due to geometry of Table II-1 are appropriate for the crossing and mid 

shots (and the numerical example is correct if the average velocity is 600 meter/sec). 

For the nearly direct shots for which vyt => - 1, a different expansion of the 

integrals is required. The details of this calculation are uniformative but the final result can 
be written as: 

12 (luyole-0*)5 a2 

(8yo)2= y"       -—Id(ayo/uyo)  . (ni"18a) 
R yote/2) 

where the function Id (ayo^Uyo) is given in Appendix C and ld(0) = 1. Note that factor 

UyO e-011 is the final velocity in the y-direction of the projectile.8 To second order in the 
drag terms, Eq. (HI-18a) can be written as: 

,    12 (luv0le_at)5 a2       n 371 , 
(5y0)2 = —-^——5 (l--ayo/uyo+^-(ay0/uyo)2+...)   . (ffl-18b) 

R yo(g/2) 6 '135 

In terms of the average velocity of the projectile in the y-direction, this can also be written 
to first order in the drag as: 

p     2     121 üL\ a2       2 
(5yo)  =- T773(1 + Tayo/uyo)   • (HI-180 

R yo(g/2)       3 

The perturbational result converges slowly. As a simple mnemonic, one sees by 
comparing Eq. (HI-18b) and Eq. (Ill-18c) that the effect of drag is to lower the effective 

velocity from the non-drag case; the result is bracketed by neglecting the perturbational 

terms and using two different velocities: the final velocity gives an underestimate of the 
range variance and the average velocity an overestimate (recall that uyo < 0 for this case). 
The precise value can be computed numerically from the integrals given in Appendix C. 

One may also write ex(-at) as 1 + ayo/uyo (this is exact for direct shot trajectories). 
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IV.   CONCLUSIONS 

The rigorous error estimates given here do not preclude the use of a system similar 
to the proposed system for estimating the parameters of a high-speed bullet trajectory. 

Indeed, in the absence of a more complete sensor design and a more detailed system 
description describing the action to be taken in response to the shooter, it is difficult to 
quantify completely the abilities and limitations of the concept. However, the errors 
calculated indicate that the system needs higher resolution than that suggested to provide 
sufficient range accuracy to be militarily useful. The differences between these analytical 
calculations and informally reported simulation results may possibly be attributed to the 
effects of the strong correlation between the estimates of the vertical velocity and 
gravitational contributions. 

The calculations have shown that the system is capable of producing highly accurate 
information about the track in angular or projective coordinates: only the range itself is in 
doubt. Thus, any method of deducing range in addition to the direct estimate provided by 
the track might permit a more accurate location. For example, battlefield intelligence and 
terrain considerations combined with knowledge of the weapons being used on the 
battlefield (and hence the possible values of the absolute muzzle velocities), might provide 
sufficient additional information to provide a useful estimate of range. 

The estimates made are maximum likelihood estimates, and hence provide rigorous 
bounds on the errors. For the zero-drag crossing shots, the errors given were made with 
no approximations other than assuming that the pixel location errors were normally 
distributed. For drag and non-crossing shot cases, it was assumed that the drag 
coefficients and the projective y-component of the velocity were exactly known (since they 
can be estimated accurately from the horizontal motion of the projectile). This means that 
the error estimates are lower bounds to the true error, that is, the true error can only be 
larger than that given here. 

The results are summarized here for convenience. The answer for the most general 
case of non-crossing shots with drag involve some tedious integrals. For shots that do not 
deviate too much from crossing shots (ending y-coordinate, ye, no less than 1/2 the initial 
y-coordinate, yo), the result is well approximated by: 
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.4 Jl 
(5yo)2 = y^J^IoaL(1 + il(    )2 + (aOl + ^V_)   , (jv-D 

y0N (g/2)2t4       105    y 42 6 

where vy = Uyo/yo is the projective y-component of the velocity. For direct shots a first 

approximation to the integrals gives: 

(6y0)
2 = 

12 (Kole"0")5 c2
z 'yO' 

R y0(g/2) 

11 371 
2-^(1-—ay0/uyo+—(ay0/uyo)2+...)   .  (IV-2) 

The range error depends on the sensor parameters chosen and the geometry of the 

shot Figure IV-1 repeats Fig. II-3 to illustrate some common shot geometries. 

 * B 
^  31 

Sensor 

Figure IV-1.   Shot Geometry 

Table IV-1 gives the range errors expected for the assumed sensor parameters and a 
typical range of 250 meters and average velocity of 600 meters/sec. The results scale as the 
5/2 power of the velocity and inversely as the square root of the range. Thus, for slower 
projectiles at longer ranges the error will be reduced. The direct shot errors do not include 
the drag correction in Eq. (IV-2) because the perturbation expansion clearly has not 

converged; note also that the error for direct shots is likely only to be a lower bound. 
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Table IV-1. Range Errors 

Shot Geometry uo = 600 m/sec, yo = 250 m 

Crossing Shot-Full FOV: ai 8yo,B±27m 

Crossing Shot-1/2 FOV: bi 8yo=±150m 

Mid Shot-Full FOV: a2 8yo=±28m 

Mid Shot-1/2 FOV: t>2 8yo"±188m 

Direct Shot: 83 8yo>=±7m 

Direct Shot: D3 8yo»±lOm 

This table shows that a reduction in the field of view is an important factor in the 
overall error. In urban or other cluttered environments the field of view may be sharply 
restricted. For example, in a city the effective field of view decreases with range. For a 
sniper in an urban location the observable path of the bullet may be restricted to 120 meters 
(a distance across a park) to 30 meters (a distance across a street). For an average velocity 
of 600 meters/sec, this corresponds to a time ranging from 0.05 to 0.2 seconds. Using 
0.1 second as a typical value (60 meters at 600 meters/sec) and the sensor parameters 
given above, the error in a near crossing shot is: 

8y0 = 2.2 10-2 yo2  m (JV.3) 

At a range of 100 meters, the error is 8y0 = ± 220 meters and increases with range. 
At 200 meters the error is 8y0 = ± 880 meters. These errors are sufficiently large to 

severely limit the usefulness of the concept in urban scenarios, even with a marked 
improvement in resolution. 

These errors are lower bounds. The largest error omitted is the extrapolation error 
if the initial flash is unobserved. This may be as much as 100 meters and is the dominant 
source of error in the range for direct shots. Other sources of error have also been omitted 
such as possible bullet tumbling and lift that would complicate the calculation of the error. 

It was also assumed that the orientation of the sensor is known precisely. This leads to a 
systematic error in the orientation of the track but does not change the statistical variance 
around the presumed track. For example, if the sensor orientation is in error by 
1 milliradian, this corresponds to a 1 milliradian rotation of the estimated track. 
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An alternate way of viewing the results is to relate the range error to the angular 
track error. Using the depression angle as an example: 

(8g-)2=^##   . (IV-3a) 

Using the zero-drag and near crossing shot limit for convenience (the result is essentially 

unchanged in the presence of drag), 

55y0 = 5ez^ = 5ez^   , 0V-3b) 
t ß 

where 0Z = Vz/vx and Q = vxt is the projective distance (angle) traveled. Therefore, for a 

nominal 1000 km/sec, the needed track resolution would be 

50z = 5Q8yo microradians   . (IV-3c) 

Thus for 1 meter accuracy in the range and a 1/2 radian trajectory, a 2.5 microradian overall 
track error would be required; for 10 meters, 25 microradians. 
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APPENDIX A 
DRAG FORCES ON BULLET PROJECTILES 

Although often described as a quadratic force, the dependence of the coefficient of 
the quadratic term on the velocity leads to a linear drag force in the region of observation. 
Figure A-l illustrates this point with a plot of drag force versus Mach Number, computed 
from the data on drag coefficients for projectiles presented in Fig. 30, Chapter XVI, of 
Hoerner's book on Fluid-Dynamic Drag.* The details of the curvature depend upon the 
relative sizes of the wave drag and base drag, since the skin drag is usually small in this 
region. Therefore, extrapolating the drag along the flight path outside the field of view will 
require knowledge of the bullet type. In principle, detailed and accurate enough 
measurements might support creating a realistic extrapolatable model for the drag. 

Projectile Drag Force 
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Figure A-1.   Drag Force as a Function of Velocity 

Sighard F. Hoemer, Dr.-Ing., Fluid Dynamic Drag: Practical Information on Aerodynamic and Hydro- 
dynamic Resistance (Midland Park, NJ.: self published), 16-21. 
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Figure A-2 shows data provided by the Ballistics Research Laboratory for an M-16. 
The initial velocity was approximately 804 m/sec dropping to 520 m/sec after about 
0.8 second. An exponential model with a = 0.56 provides an excellent fit to the data. 
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Figure A-2.   Velocity of M-16 Ball Ammunition 

Another major issue beyond the statistical treatment in the body of this draft is 
whether or not a three-dimensional track could be accurately extrapolated out of the field of 
view to a firing position in the case where the firing position were unknown. Clearly this 
requires knowledge of the muzzle velocity. While muzzle velocities for a given gun and 
ammunition have low variances, the large number of available weapons and ammunition 
types makes a priori knowledge of the muzzle velocity unlikely. For example, Jane's 
Infantry Weapons lists about 40 rifles which fire standard NATO 7.62 x 51 mm ammuni- 

tion. As shown in Table A-l, the muzzle velocities range from 700 m/s to 860 m/s. This 

corresponds to a 20 percent uncertainty in the distance at which the bullet was first seen, if 
one is attempting to use prior knowledge of the velocity to distinguish the track. 
Furthermore, when extrapolating outside the field of view, the difference in firing position 
if one extrapolates back to 700 m/s versus 860 m/s will be on the order of 100 m. Machine 
guns firing this size ammunition have a smaller range of muzzle velocities, from 790 m/s to 
869 m/s. On the other hand, if one does not know cartridge length, but only caliber, then 

machine gun muzzle velocities also extend down to 700 m/s and rifle muzzle velocities 
extend down to 572 m/s. 
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Table A-1.   Rifle Velocities 

Rifles 

Country Title Muzzle Velocity (m/s) 

5.56 x 45 mm 

Iraq 
USA 

Tabuk 

Ruger AC-556 
710 (minimum) 

1058 (maximum) 

7.62 x 39 mm Soviet 

Hungary 

Finland 

AMD-65 

Valmet M90 
700 (minimum) 

800 (maximum) 
7.62 x 51 mm NATO 

Japan 

Austria 
Austria 

Type 64 

Steyr SSG-69 
Steyr Police 

700 (minimum) 
860 (maximum) 
860 (maximum) 

Machine Guns 

Country Title Muzzle Velocity (m/s) 
5.56 x 45 mm 

Israel 

Austria 
Canada 

Yugoslavia 

GaBIARM 
Steyr LSW 

C7 

M82 

850 (minimum) 
1000 (maximum) 

1000 (maximum) 

1000 (maximum) 
7.62 x 51 mm 

Switzerland 
USA 

SIG 710-3 
M134 

790 (minimum) 

869 (maximum) 
12.7x99 mm (.50) 

USA 

Belgium 
|                 Belgium 

Browning M2HB 

FN M2HB 

FN M2HB/QCB 

810 (minimum) 

930 (maximum) 
930 (maximum) 
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APPENDIX B 
SENSOR CONSIDERATIONS 

In the absence of a completely specified sensor design concept, an analysis would 
be supererogatory. The points mentioned here form a prolegomenon to a thorough 
analysis. 

A 512 x 512 MWIR focal plane is likely to be at most 2 cm in size. For a 60 degree 

field of view, this corresponds to a focal length of 2 cm and a maximum practical (f#l) 
aperture of 2 cm. For a wavelength of 4 microns, the size of the blur circle matches the 
detector subtense for an aperture of 1/2 cm (f#4). For a sensor with an aperture greater 
than 1/2 cm, the blur spot will be proportionally smaller than the detector and highly precise 
subpixel location accuracy is unlikely unless the blur spot is deliberately defocused. 

Assuming the blur circle is small compared to the pixel height (f# < 4, no 
defocusing), the only possible assignment of the z coordinate is the center of that pixel 
(vertically). Assuming the center of the image could be anywhere within the pixel, the 
vertical error is 1/Vl2 pixel « 0.29 pixel. However, the localization errors between 
samples are not independent as assumed in the text. Therefore, one would not get the 
benefit of the factor of N (100-400) but rather a much smaller gain of the order of 2 or 3 
(since the number of rows crossed by the projectile will be 2 or 3 at most. Therefore, the 
f# will have to be greater than f#4 and information between rows used to isolate the 
location. 

In general, subpixel localization can depend on turbulent scintillation, distortion and 
blurring of the image of the projectile; hydrodynamic force perturbations on the trajectory 
(lift and cross-winds); and on the degree of non-uniformity of the focal plane. For 

example, for a path length of 1 km, and a 0.25 cm diameter optic (f#8, two samples/blur in 
the vertical), and moderate turbulence (Cn

2 = 1(H2), the short time exposure uncertainty in 
the centroid of the image is about 0.1 milliradian (1/20 pixel). The error due to turbulence 
increases proportionally to the square root of the range so that the ratio aturb2/yo> which is 

required in the development in the body of the paper, would be fixed. Thus, if the only 
limit to the subpixel localization were turbulence, the range error would become independ- 
ent of range and might approach 1/5 of the errors given for y0= 1 km in Table II-1; for 
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example, ± 30 meters for u = 800 meters/sec and a 30 degree field of view. This lower 
bound on the subpixel error might be increased by a factor of 3 in the most severe 
turbulence and does not take into account any distortion of the point spread function that 

might affect the estimate of the location, array non-uniformities, or any other source of 

error. 

The readout rate corresponds to 100 megasamples/sec which is aggressive but has 
been used in special purpose focal planes such as the NWSC (Dahlgren Division) Non- 
uniformity correction (NUC) focal plane; the current cost of the NUC focal plane (as a 
limited production item) is in excess of $100,000. The cost would be expected to be 
reduced under production conditions. If the readout rate were reduced to 100 Hz, the range 

errors would double. 
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APPENDIX C 
THE FACTOR Id 

The formula given in Eq. (IE- 18a) for the direct shot in the presence of drag is 

,    12 (uv0e_at)5 o2 

(5yo) =    P    / „<L   ^«yo' uxo>     • (c-i) R yo(g/2) 

The function Id(x) is given by: 

r«2(e) , -,„, , . ,^2 -48 e2-, (—-^+t(e) + i1(e))z 

l/Id(x) = ^-[—t3(e)-i2(e) + t(e)(t(e) + l) 2 — ]   , (C-2) 
e     3 t(e) 

where 

e=ih (C-3a) 

i(e) = i5S^ (C-3b) 
e 

l 

il(B)«JJ2Siz2k (c-30 
o   "* 

o    * 

These integrals result from taking the direct shot limit of the fundamental equations and 
some tedious algebra. Expanding the integral in Eq. (C-3a)-(C-3d) to second order and 
inserting the results into Eq. (C-2) gives the result given in the main text in Eq. (im-18b). 
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